Part Number Hot Search : 
BYG10K N74F598D SI4190DY 62004 30KP168A MW41R C321SL0 MC500
Product Description
Full Text Search
 

To Download MBR41H100CT07 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1 SWITCHMODEt Power Rectifier 100 V, 40 A
Features and Benefits
http://onsemi.com
1 2, 4 3 4
* * * * * * *
Low Forward Voltage: 0.67 V @ 125C Low Power Loss/High Efficiency High Surge Capacity 175C Operating Junction Temperature 40 A Total (20 A Per Diode Leg) Guard-Ring for Stress Protection Pb-Free Packages are Available
1 2 3
MARKING DIAGRAMS
TO-220AB CASE 221A PLASTIC STYLE 6
Applications
AYWW B41H100G AKA
* Power Supply - Output Rectification * Power Management * Instrumentation
Mechanical Characteristics:
4
* Case: Epoxy, Molded * Epoxy Meets UL 94 V-0 @ 0.125 in * Weight (Approximately): 1.9 Grams (TO-220AB) * *
D2PAK CASE 418B STYLE 3
1 3
AYWW B41H100G AKA
1.7 Grams (D2PAK) 1.5 Grams (TO-262) Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable Lead Temperature for Soldering Purposes: 260C Max. for 10 Seconds
12 3
4 I2PAK (TO-262) CASE 418D PLASTIC STYLE 3 A Y WW G AKA AYWW B41H100G AKA
MAXIMUM RATINGS
Please See the Table on the Following Page
= Assembly Location = Year = Work Week = Pb-Free Package = Polarity Designator
ORDERING INFORMATION
Device MBR41H100CT MBR41H100CTG MBRB41H100CT-1G MBRB41H100CTT4G Package TO-220 TO-220 (Pb-Free) TO-262 (Pb-Free) D2PAK (Pb-Free) Shipping 50 Units/Rail 50 Units/Rail 50 Units/Rail 800/Tape & Reel
For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
(c) Semiconductor Components Industries, LLC, 2007
1
March, 2007 - Rev. 4
Publication Order Number: MBR41H100CT/D
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
MAXIMUM RATINGS (Per Diode Leg)
Rating Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage Average Rectified Forward Current (Rated VR) TC = 150C Peak Repetitive Forward Current (Rated VR, Square Wave, 20 kHz) TC = 145C Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz) Operating Junction Temperature (Note 1) Storage Temperature Voltage Rate of Change (Rated VR) Controlled Avalanche Energy (see test conditions in Figures 10 and 11) ESD Ratings: Machine Model = C Human Body Model = 3B Symbol VRRM VRWM VR IF(AV) IFRM IFSM TJ Tstg dv/dt WAVAL Value 100 Unit V
20 40 350 +175 *65 to +175 10,000 400 > 400 > 8000
A A A C C V/ms mJ V
THERMAL CHARACTERISTICS (PER DIODE LEG)
Maximum Thermal Resistance - Junction-to-Case - Junction-to-Ambient RqJC RqJA 2.0 70 C/W
ELECTRICAL CHARACTERISTICS (Per Diode Leg)
Maximum Instantaneous Forward Voltage (Note 2) (IF = 20 A, TC = 25C) (IF = 20 A, TC = 125C) (IF = 40 A, TC = 25C) (IF = 40 A, TC = 125C) Maximum Instantaneous Reverse Current (Note 2) (Rated DC Voltage, TC = 125C) (Rated DC Voltage, TC = 25C) vF 0.80 0.67 0.90 0.76 iR 10 0.01 mA V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. The heat generated must be less than the thermal conductivity from Junction-to-Ambient: dPD/dTJ < 1/RqJA. 2. Pulse Test: Pulse Width = 300 ms, Duty Cycle 2.0%.
http://onsemi.com
2
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
IF, INSTANTANEOUS FORWARD CURRENT (AMPS) IF, INSTANTANEOUS FORWARD CURRENT (AMPS)
1000
1000
100 TJ = 150C 10 TJ = 125C TJ = 25C
100 TJ = 125C 10
TJ = 150C
1
TJ = 25C 1
0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
0.1 0 0.2 0.4 0.6 0.8 1.0 1.2 VF, INSTANTANEOUS FORWARD VOLTAGE (VOLTS)
Figure 1. Typical Forward Voltage
Figure 2. Maximum Forward Voltage
1.0E-01 IR, REVERSE CURRENT (AMPS) 1.0E-02 1.0E-03 TJ = 125C TJ = 150C
IR, MAXIMUM REVERSE CURRENT (AMPS)
1.0E-01
TJ = 150C
1.0E-02 1.0E-03 TJ = 125C
1.0E-04 1.0E-05 1.0E-06 TJ = 25C
1.0E-04 1.0E-05 1.0E-06 TJ = 25C
1.0E-07
1.0E-07 1.0E-08 0
1.0E-08 0
20
40
60
80
100
20
40
60
80
100
VR, REVERSE VOLTAGE (VOLTS)
VR, REVERSE VOLTAGE (VOLTS)
Figure 3. Typical Reverse Current
Figure 4. Maximum Reverse Current
IF, AVERAGE FORWARD CURRENT (AMPS)
PFO, AVERAGE POWER DISSIPATION (WATTS)
35 30 25 20 15 10 5 0 100 SQUARE WAVE dc
50 45 40 35 30 25 20 15 10 5 0 0 5 10 15 20 25 30 35 40 45 50 IO, AVERAGE FORWARD CURRENT (AMPS) DC SQUARE
110
120
130
140
150
160
170
180
TC, CASE TEMPERATURE (C)
Figure 5. Current Derating
Figure 6. Forward Power Dissipation http://onsemi.com
3
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
10000 TJ = 25C C, CAPACITANCE (pF)
1000
100
10 0 20 40 60 80 100 VR, REVERSE VOLTAGE (VOLTS)
Figure 7. Capacitance
R(t), TRANSIENT THERMAL RESISTANCE
100
D = 0.5 0.2 0.1 0.05
10
1 0.01 0.1 P(pk) t1 0.01 SINGLE PULSE t2
DUTY CYCLE, D = t1/t2 0.0001 0.001 0.01 t1, TIME (sec) 0.1 1 10 100 1000
0.001 0.000001
0.00001
Figure 8. Thermal Response Junction-to-Ambient
R(t), TRANSIENT THERMAL RESISTANCE
10
1
D = 0.5 0.2 0.1 0.05 0.01 P(pk) t1 t2
0.1
0.01
SINGLE PULSE
DUTY CYCLE, D = t1/t2 0.001 0.000001 0.00001 0.0001 0.001 0.01 t1, TIME (sec) 0.1 1 10 100 1000
Figure 9. Thermal Response Junction-to-Case
http://onsemi.com
4
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
+VDD IL 10 mH COIL VD MERCURY SWITCH ID IL ID VDD t0 t1 t2 t BVDUT
S1
DUT
Figure 10. Test Circuit
Figure 11. Current-Voltage Waveforms
The unclamped inductive switching circuit shown in Figure 10 was used to demonstrate the controlled avalanche capability of this device. A mercury switch was used instead of an electronic switch to simulate a noisy environment when the switch was being opened. When S1 is closed at t0 the current in the inductor IL ramps up linearly; and energy is stored in the coil. At t1 the switch is opened and the voltage across the diode under test begins to rise rapidly, due to di/dt effects, when this induced voltage reaches the breakdown voltage of the diode, it is clamped at BVDUT and the diode begins to conduct the full load current which now starts to decay linearly through the diode, and goes to zero at t2. By solving the loop equation at the point in time when S1 is opened; and calculating the energy that is transferred to the diode it can be shown that the total energy transferred is equal to the energy stored in the inductor plus a finite amount of energy from the VDD power supply while the diode is in breakdown (from t1 to t2) minus any losses due to finite component resistances. Assuming the component resistive
elements are small Equation (1) approximates the total energy transferred to the diode. It can be seen from this equation that if the VDD voltage is low compared to the breakdown voltage of the device, the amount of energy contributed by the supply during breakdown is small and the total energy can be assumed to be nearly equal to the energy stored in the coil during the time when S1 was closed, Equation (2).
EQUATION (1): BV 2 DUT W [ 1 LI LPK AVAL 2 BV -V DUT DD
EQUATION (2): 2 W [ 1 LI LPK AVAL 2
http://onsemi.com
5
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
PACKAGE DIMENSIONS
TO-220 PLASTIC CASE 221A-09 ISSUE AD
-T- B
4
SEATING PLANE
F T S
C
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. DIM A B C D F G H J K L N Q R S T U V Z INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 --- --- 0.080 ANODE CATHODE ANODE CATHODE MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 --- --- 2.04
Q
123
A U K
H Z L V G D N R J
STYLE 6: PIN 1. 2. 3. 4.
http://onsemi.com
6
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
PACKAGE DIMENSIONS
D2PAK 3 CASE 418B-04 ISSUE J
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04. DIM A B C D E F G H J K L M N P R S V INCHES MIN MAX 0.340 0.380 0.380 0.405 0.160 0.190 0.020 0.035 0.045 0.055 0.310 0.350 0.100 BSC 0.080 0.110 0.018 0.025 0.090 0.110 0.052 0.072 0.280 0.320 0.197 REF 0.079 REF 0.039 REF 0.575 0.625 0.045 0.055 MILLIMETERS MIN MAX 8.64 9.65 9.65 10.29 4.06 4.83 0.51 0.89 1.14 1.40 7.87 8.89 2.54 BSC 2.03 2.79 0.46 0.64 2.29 2.79 1.32 1.83 7.11 8.13 5.00 REF 2.00 REF 0.99 REF 14.60 15.88 1.14 1.40
C E -B-
4
V W
A
1 2 3
S
-T-
SEATING PLANE
K G D 3 PL 0.13 (0.005) H
M
W J
TB
M
VARIABLE CONFIGURATION ZONE L M
R
N U L
P L M
STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE
M
F VIEW W-W 1
F VIEW W-W 2
F VIEW W-W 3
SOLDERING FOOTPRINT*
8.38 0.33
10.66 0.42
1.016 0.04
5.08 0.20
3.05 0.12 17.02 0.67
SCALE 3:1 mm inches
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MBR41H100CT, MBRB41H100CT, MBRB41H100CT-1
PACKAGE DIMENSIONS
I2PAK (TO-262) CASE 418D-01 ISSUE C
C -B-
4
E V
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G H J K S V W INCHES MIN MAX 0.335 0.380 0.380 0.406 0.160 0.185 0.026 0.035 0.045 0.055 0.122 REF 0.100 BSC 0.094 0.110 0.013 0.025 0.500 0.562 0.390 REF 0.045 0.070 0.522 0.551 ANODE CATHODE ANODE CATHODE MILLIMETERS MIN MAX 8.51 9.65 9.65 10.31 4.06 4.70 0.66 0.89 1.14 1.40 3.10 REF 2.54 BSC 2.39 2.79 0.33 0.64 12.70 14.27 9.90 REF 1.14 1.78 13.25 14.00
W
1 2 3
A
F -T-
SEATING PLANE
K S J H G D
3 PL M
0.13 (0.005)
TB
M
STYLE 3: PIN 1. 2. 3. 4.
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative
http://onsemi.com
8
MBR41H100CT/D


▲Up To Search▲   

 
Price & Availability of MBR41H100CT07

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X